

Atualização: 2010-01-19 15:45

	Implantação	
4 645467567646 65546	1ª Etapa	2ª Etapa
1. CARACTERÍSTICAS GERAIS		
1.1 - LINHA DE RECALQUE		
Tipo de material da tubulação Q _{máx} = Vazão máxima de bombeamento	PVC - DEF°F° 15,80 L/s	PVC - DEF°F° 19,26 L/s
L = Comprimento da tubulação	945,57 m	945,57 m
	0 10,07 111	010,01111
1.2 - ESTAÇÃO ELEVATÓRIA N _b = Número de bombas em funcionamento simultâneo (ativas)	1 bomba	1 bomba
N _b = Número de bombas em funcionamento simultaneo (ativas)	1 bomba	1 bomba
Tipo de bombas:	Centrífugas	Centrífugas
2. DIMENSIONAMENTO DAS TUBULAÇÕES		
2.1 - CÁLCULO DO DIÂMETRO ECONÔMICO		
O cálculo do diâmetro econômico é obtido pela fórmula de Bresse apresentada a seguir: $\mathbf{D} = \mathbf{K} \cdot \sqrt{\mathbf{Q}}$		
Onde:		
D = Diâmetro econômico K = Coeficiente da fórmula de Bresse	1.20	1 20
Q = Vazão máxima de fim de plano, em m³/s	1,20 0,016 m³/s	1,20 0,019 m³/s
		-,
Por esta equação o diâmetro da tubulação de recalque (D _R) seria de:	151 mm	167 mm
Deverá ser adotado diâmetro comercial próximo ao calculado da 2ª etapa, podendo ser inferior ou não em função da velocidade a ser desenvolvida (entre 0,6 e 3,0m/s). Neste caso, tem-se:		
D _r = Diâmetro de recalque	200 mm	200 mm
D _b = Diâmetro de barrilete	200 mm	200 mm
2.2 - CÁLCULO DA VELOCIDADE NO TRECHO		
Para o cálculo da velocidade do fluxo na tubulação usou-se a equação		
a seguir:		
$V = \frac{4 \cdot \mathbf{Q}^2}{\pi \cdot \mathbf{D}^2}$		
$\pi \cdot \mathbf{D}^2$		
Onde:		
Q = Vazão na tubulação, em m³/s	0,0158 m³/s	0,0193 m³/s
D = Diâmetro de recalque, em m V = Velocidade do fluxo na tubulação, em m/s	200 mm 0,50 m/s	200 mm 0,61 m/s
v – velocidade do lidxo na tubulação, em m/s	0,30 1175	0,01111/5
2.3 - CÁLCULO DA PERDA DE CARGA LINEAR		
Pela fórmula de HAZEN-WILLIAMS, obtém-se a perda de carga linear		
· · · · · · · · · · · · · · · · · · ·		
na tubulação, conforme equação a seguir: $j = \frac{10,643 \cdot Q^{1,85}}{C^{1,85} \cdot D^{4,87}}$		
Onde:		
j = Perda de carga linear		
Q = Vazão no trecho	0,0158 m³/s	0,0193 m³/s
D = Diâmetro no tubo	0,200 m	0,200 m
C = Coeficiente de Hazen-Williams	130	130
Por esta equação, a perda de carga linear na tubulação é igual à:	0.00454	0.00000
j = perda de carga linear	0,00154m/m	0,00222m/m
2.4 - CÁLCULO DA PERDA DE CARGA LOCALIZADA		
Segundo Azevedo Netto, as perdas de carga localizadas são função do quadrado da velocidade		
e do coeficiente "K". O valor deste coeficiente diz respeito aos tipos de singularidades existentes		
Inas tubulações do parrilete e na proceso libro do roccido Vor a equação a seguir:		
nas tubulações do barrilete e na préprio linho do recolous. Ver o equação a seguir: $h_f = K_b \frac{{V_b}^2}{2g} + K_r \frac{{V_r}^2}{2g}$		
-5 -5		

Atualização: 2010-01-19 15:45

					Impla	ntação
					1ª Etapa	2ª Etapa
Onde:						
K _b = Coeficiente relacionado às s					3,60	3,60
K _r = Coeficiente relacionado às si		na linha de reca	ilque		10,69	10,69
V_b = Velocidade do fluxo no barri V_r = Velocidade do fluxo na linha					0,61 m/s	0,61 m/s
g = Aceleração da gravidade	de recaique				0,61 m/s 9,81 m/s²	0,61 m/s 9,81 m/s ²
h _b = Perda de carga localizada no) harrilete				0,07 m	0,07 m
h _r = Perda de carga localizada na		ane			0,20 m	0,20 m
h _f = Perda de carga localizada tot		400			0,27 m	0,27 m
		. IZ/a) malatinga à				0,2
SS: K foi obtido através do somató na de recalque e sucção. Ver tabel		s K(s) relativos a	a todas as singui	andades na		
la de recalque e sueção. Ver tabel						
TIPO	Barri K	QUANT.	K PARCIAL	- 1		
Curva 45°	0,20	3,00	0,60			
Ampliação d/D=3/4	0,19	5,55	5,55	1		
Redução d/D=1/2	0,33			1		
Curva 90°	0,40	5,00	2,00	1		
Tê (passagem direta)	0,90		,	1		
Tê (saída lateral)	2,00			1		
Te bilateral	1,80			1		
Registro de gaveta	0,20			1		
Válvula de retenção	3,00]		
Outros	1,00	1,00	1,00			
		1		K _b	3,60	3,60
TIPO	Reca	1	L/ DADOLAL			
Curva 45°	0,20	QUANT.	K PARCIAL	-		
Ampliação d/D=3/4	0,19	1,00	0,19	-		
Redução d/D=1/2	0,33	1,00	0,13	-		
Curva 90°	0,40	11,00	4,40	1		
Tê (passagem direta)	0,90	1,00	0,90	-		
Tê (saída lateral)	2,00	1,00	2,00			
Te bilateral	1,80	,	, , , ,	1		
Válvula de gaveta	0,20	1,00	0,20	1		
Válvula de retenção	3,00	1,00	3,00	1		
Outros	1,00					
				K _r	10,69	10,69
				K _{Total}	14,29	14,29
		A perd	a de carga locali	izada será (h.)	0,27 m	0,27 m
		, t polu			V)=: :!!!	J,2.1 III
LCULO DA PERDA DE CA	RGA TOTAL					
a de carga total na tubulação	o é obtida pela	equação a seg	guir:			
$H_i = L \cdot j + h_f$						
Onde:						
	omprimento d	a tuhulacão			945,57 m	945,57 m
	erda de carga l				0,00154m/m	0,00222m/m
	Perda de carga i				0,0013411/111 0,27 m	0,0022211//III
		a total na tubula	acão		1,73 m	2,37 m
· · · j = ·	2. 22 40 oaige		-3-20		.,,, 0 111	2,07 111
NSIONAMENTO DA E		LEVATÓRIA	A			
cálculo da altura manométrica		mha(e) eomou	-se an despirel	neométrico o		
perda de carga distribuída a						
la total. vel geométrico é dado pela d			a do ponto de re	calque e a cota		
						I
do líquido no poço de sucção		_				
a do líquido no poço de sucção	$= \mathbf{C}_{MAX}$,rec $-$	_				

Atualização: 2010-01-19 15:45

Implantação

	Implantação		
	1ª Etapa	2ª Etapa	
Onde:	•	•	
C _{máx,rec} = Cota do ponto mais alto da linha de recalque	47,590	47,590	
C _{mín,rap} = Cota do nível mínimo do reservatório apoiado	10,860	10,860	
шинф			
Desta forma obtém-se o seguinte desnível geométrico			
H _q = Desnível Geométrico	36,73 m	36,73 m	
rig – Desitivel Geometrico	30,73 111	30,73 111	
A altura manométrica total (AMT) será dada pela equação a seguir:			
$\mathbf{AMT} = \mathbf{H_{q}}^* + \mathbf{H_{i}}$			
Onde:			
H _q * = Desnível Geométrico	36,73 m	36,73 m	
H _i = Perda de carga total	1,73 m	2,37 m	
AMT = Altura Manométrica Total	38,46 m	39,10 m	
AWT - Altura Manometrica Total	30,40 111	39, 10 111	
3.2 - CÁLCULO DA POTÊNCIA DOS MOTORES			
A potência dos motores foi calculada utilizando-se a equação a seguir. Para isto levou-se em			
conta o número de motores em funcionamento simultâneo.			
W.O. AMT			
$P = \frac{W \cdot Q_{max} \cdot AMT}{N_b \cdot 75 \cdot n} \cdot F_s$			
$N_b \cdot 75 \cdot \eta$			
Onde:			
P = Potência instalada para cada conj. motor-bomba da estação elevatória			
W = Peso específico do líquido a ser recalcado	1000 Kg/m ³	1000 Kg/m³	
Q _{máx} = Vazão de bombeamento para fim de plano para cada bomba	0,0158 m³/s	0,0193 m³/s	
Hg* = desnível geométrico	36,73 m	36,73 m	
AMT = Altura Manométrica Total	38,46 m	39,10 m	
N _b = Número de conjuntos motor-bomba em funcionamento simultâneo	1 bomba(s)	1 bomba(s)	
η = Rendimento do conjunto motor-bomba	68,1%	67,8%	
F _S = Fator de Serviço	1,15	1,15	
Para o cálculo, adotou-se as bombas com as seguintes características			
Tipo de bombas:	Centrífugas	Centrífugas	
η_b = Rendimento da bomba	79,8%	79,8%	
η_m = Rendimento do motor	85,4%	85,0%	
Aplicando a equação acima, a potência instalada em cada conjunto motor-bomba é igual à:			
P = Potência instalada por conjunto motor-bomba:	13,7 CV	17,0 CV	
i – i otencia instalada poi conjunto motor-bomba.	13,7 CV 13,5 HP	16,8 HP	
	10,05 kW	12,51 kW	
	. 5,55 1.11	. =, = 1 1111	
Os motores elétricos normalmente não possuem a potência especificada, portanto foi necessário			
utilizar as seguintes potências comerciais:			
Potência comercial em cada conjunto motor-bomba da estação elevatória:	15,00 CV	20,00 CV	
Potência comercial total da estação elevatória:	15,00 CV	20,00 CV	

3.3 CURVAS CARACTERÍSTICAS

Na Figura a seguir, estão apresentadas as curvas características da bomba e do sistema. A curva do sistema foi caracterizada em função da vazão, conforme equação abaixo:

$$AMT = Hg + \left(\frac{h_f}{Q^2}\right) \cdot Q^2 + \left(\frac{L \cdot j}{Q^{1,85}}\right) \cdot Q^{1,85}$$

Aplicando os valores obtidos ao longo do dimensionamento, chega-se à seguinte curva do sistema:

 $AMT = 36,73 + 0,001096 \cdot Q^2 + 0,00883 \cdot Q^4(1,85)$

Atualização: 2010-01-19 15:45

	Implantação	
	1ª Etapa	2ª Etapa
3.4 - CÁLCULO DO NPSH		
A sigla NPSH (Net Positive Succion Head) é adotada universalmente para designar a energia disponível na sucção. Há dois valores a considerar: NPSH requerido que é uma característica da bomba, fornecida pelo fabricante e o NPSH disponível, que é uma característica das instalações de sucção, que pode ser calculada pela seguinte equação:		
Onde: h _{bomba} = Cota do eixo da bomba	11,600	11,600
h _{mín.suc} = Cota do NA mínimo do poço de sucção	9.600	9.600
Z = altura de sucção	-1,90 m	-1,90 m
P _a = Pressão atmosférica	10.092,22 Kg/m³	10.092,22 Kg/m ³
P _v = Pressão de vapor	0.752,17 Kg/m ³	0.752,17 Kg/m ³
γ = Peso específico da água	1.000,00 Kg/m³	1.000,00 Kg/m ³
h _f = Perda de carga localizada na sucção	3,60 m	3,60 m
NPSH _{disp.}	7,64 m	7,64 m